POCS-Based Annotation Method Using Kernel PCA for Semantic Image Retrieval

نویسندگان

  • Takahiro Ogawa
  • Miki Haseyama
چکیده

A projection onto convex sets (POCS)-based annotation method for semantic image retrieval is presented in this paper. Utilizing database images previously annotated by keywords, the proposed method estimates unknown semantic features of a query image from its known visual features based on a POCS algorithm, which includes two novel approaches. First, the proposed method semantically assigns database images to some clusters and introduces a nonlinear eigenspace of visual and semantic features in each cluster into the constraint of the POCS algorithm. This approach accurately provides semantic features for each cluster by using its visual features in the least squares sense. Furthermore, the proposed method monitors the error converged by the POCS algorithm in order to select the optimal cluster including the query image. By introducing the above two approaches into the POCS algorithm, the unknown semantic features of the query image are successfully estimated from its known visual features. Consequently, similar images can be easily retrieved from the database based on the obtained semantic features. Experimental results verify the effectiveness of the proposed method for semantic image retrieval. key words: CBIR, semantic image analysis, POCS, KPCA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Content-based histopathology image retrieval using a kernel-based semantic annotation framework

Large amounts of histology images are captured and archived in pathology departments due to the ever expanding use of digital microscopy. The ability to manage and access these collections of digital images is regarded as a key component of next generation medical imaging systems. This paper addresses the problem of retrieving histopathology images from a large collection using an example image...

متن کامل

Semiautomatic Image Retrieval Using the High Level Semantic Labels

Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...

متن کامل

Fuzzy Neighbor Voting for Automatic Image Annotation

With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...

متن کامل

POCS-Based Texture Reconstruction Method Using Clustering Scheme by Kernel PCA

A new framework for reconstruction of missing textures in digital images is introduced in this paper. The framework is based on a projection onto convex sets (POCS) algorithm including a novel constraint. In the proposed method, a nonlinear eigenspace of each cluster obtained by classification of known textures within the target image is applied to the constraint. The main advantage of this app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 91-A  شماره 

صفحات  -

تاریخ انتشار 2008